Show simple item record

dc.contributor.advisorRoy Welsch and Daniel Whitney.en_US
dc.contributor.authorMillerd, Paul, M.B.A. Massachusetts Institute of Technology.en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2012-09-27T15:28:58Z
dc.date.available2012-09-27T15:28:58Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/73395
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 62).en_US
dc.description.abstractMany companies have implemented lean and six sigma programs over the past twenty years. Lean has been a proven system that has eliminated waste and created value at many companies throughout the world. Raytheon IDS's lean program, "Raytheon Six Sigma" became a top priority in the past ten years at the Integrated Air Defense Center (IADC) in Andover, MA. However, as Raytheon's corporate goals state, they want to take this further and bring "Raytheon Six Sigma" to the next level, fully engaging customers and partners. A focus of this continuous improvement effort was the Electronics Assembly Rack manufacturing cell, which was experiencing high levels of cycle time variability. To help reduce cycle times within the cell, a continuous improvement project was undertaken to improve the material flow process. A current state analysis of the process showed an opportunity to improve process standardization and prioritization while lowering inventory levels. In addition to working with managers from EA to evaluate the material flow process, a kitting cart was developed with a cross functional project team to serve as a tool to help improve the process. Although the improvements were not rolled out to the entire cell during the project, a successful pilot was conducted that helped improve engagement with operators and create a path for future success.en_US
dc.description.statementofresponsibilityby Paul Millerd.en_US
dc.format.extent62 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleDriving cycle time reduction through an improved material flow process in the electronics assembly manufacturing cellen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentSloan School of Management
dc.identifier.oclc810131167en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record