Developing a data-driven approach for improving operating room scheduling processes
Author(s)
Sham, Gregory C. (Gregory Chi-Keung)
DownloadFull printable version (4.510Mb)
Other Contributors
Leaders for Global Operations Program.
Advisor
David Simchi-Levi and Vivek Farias.
Terms of use
Metadata
Show full item recordAbstract
In the current healthcare environment, the cost of delivering patient care is an important concern for hospitals. As a result, healthcare organizations are being driven to maximize their existing resources, both in terms of infrastructure and human capital. Using a data-driven approach with analytical techniques from operations management can contribute towards this goal. More specifically, this thesis shows, drawing from a recent project at Beth Israel Deaconess Medical Center (BIDMC), that predictive modeling can be applied to operating room (OR) scheduling in order to effectively increase capacity. By examining the current usage of the existing block schedule system at BIDMC and developing a linear regression model, OR time that is expected to go unused can be instead identified in advance and freed for use. Sample model results show that it is expected to be operationally effective by capturing a large enough portion of OR time for a pooled set of blocks to be useful for advanced scheduling purposes. This analytically determined free time represents an improvement in how the current block system is employed, especially in terms of the nominal block release time. This thesis makes the argument that such a model can integrate into a scheduling system with more efficient and flexible processes, ultimately resulting in more effective usage of existing resources.
Description
Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2012. Cataloged from PDF version of thesis. Includes bibliographical references (p. 52).
Date issued
2012Department
Leaders for Global Operations Program at MIT; Massachusetts Institute of Technology. Engineering Systems Division; Sloan School of ManagementPublisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Engineering Systems Division., Leaders for Global Operations Program.