MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mean curvature flow self-shrinkers with genus and asymptotically conical ends

Author(s)
Møller, Niels Martin
Thumbnail
DownloadFull printable version (7.048Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Tobias H. Colding
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This doctoral dissertation is on the theory of Minimal Surfaces and of singularities in Mean Curvature Flow, for smooth submanifolds Y" in an ambient Riemannian (n+ 1)-manifold Nn+1, including: (1) New asymptotically conical self-shrinkers with a symmetry, in R"+1. (1') Classification of complete embedded self-shrinkers with a symmetry, in IR"+1, and of asymptotically conical ends with a symmetry. (2) Construction of complete, embedded self-shrinkers E2 C R3 of genus g, with asymptotically conical infinite ends, via minimal surface gluing. (3) Construction of closed embedded self-shrinkers y2 C R3 with genus g, via minimal surface gluing. In the work there are two central geometric and analytic themes that cut across (1)-(3): The notion of asymptotically conical infinite ends in (1)-(1') and (2), and in (2) and (3) the gluing methods for minimal surfaces which were developed by Nikolaos Kapouleas. For the completion of (2) it was necessary to initiate the development of a stability theory in a setting with unbounded geometry, the manifolds in question having essentially singular (worse than cusp-like) infinities. This was via a Schauder theory in weighted Hölder spaces for the stability operator, which is a Schrodinger operator of Ornstein-Uhlenbeck type, on the self-shrinkers viewed as minimal surfaces. This material is, for the special case of graphs over the plane, included as part of the thesis. The results in (1)-(1') are published as the joint work [KMø 1] with Stephen Kleene, and the result in (2) was proven in collaboration with Kleene-Kapouleas, and appeared in [KKMø 0]. The results in (3) are contained in the preprint [Mø1].
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 121-124).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/73433
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.