MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel reactions of a neutral organic reductant : reductive coupling and nanoparticle synthesis

Author(s)
Mork, Anna Jolene
Thumbnail
DownloadFull printable version (4.469Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Chemistry.
Advisor
Timothy M. Swager.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A recently developed bis-pyridinylidene neutral organic electron donor captured our interest as a potential source of new chemistries for reductive coupling and the synthesis of group IV nanoparticles. This super electron donor was used as a co-reductant for nickel-catalyzed reductive coupling of aryl halides in order for the reaction to be homogeneous and avoid the traditional co-reductant, zinc, previously reported for these Yamamoto-type dehalogenative couplings. Reductive coupling was somewhat successful for specific substrates, including 4- bromoanisole and 2,5-dibromothiophene, but competing hydrodehalogenation of the aryl halide was problematic for both expanding the substrate scope and increasing the length of the polymers generated from this reaction. The attempt to synthesize silicon and germanium nanoparticles from reduction of the corresponding tetrachloride precursors using this super organic electron donor met limited success. Dimerization of silicon species occurred, but there was little conclusive evidence of nanoparticle formation. Finally, in a brief side-project to explore other applications of the organic reductant, the molecule was shown to successfully n-dope both p-type and n-type organic electronic materials.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2012.
 
Vita. Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 53-55).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/73438
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.