Show simple item record

dc.contributor.advisorDavid Vogan.en_US
dc.contributor.authorSpeh, Peter (Peter Daniel)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mathematics.en_US
dc.date.accessioned2012-09-27T18:12:54Z
dc.date.available2012-09-27T18:12:54Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/73443
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 83).en_US
dc.description.abstractLet g be a complex, reductive Lie algebra. We prove a theorem parametrizing the set of nilpotent orbits in g in terms of even nilpotent orbits of subalgebras of g and show how to determine these subalgebras and how to explicitly compute this correspondence. We prove a theorem parametrizing nilpotent orbits for strong involutions of G in terms of even nilpotent orbits of complex subalgebras of g and show how to explicitly compute this correspondence.en_US
dc.description.statementofresponsibilityby Peter Speh.en_US
dc.format.extent83 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleA classification of real and complex nilpotent orbits of reductive groups in terms of complex even nilpotent orbitsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc809691034en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record