MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbon Nanotube Growth Using Ni Catalyst in Different Layouts

Author(s)
Nguyen, H. Q.; Krishnan, R.; Choi, K. W.; Thompson, Carl V.; Lim, F. Y.
Thumbnail
DownloadAMMNS001.pdf (12.00Kb)
Metadata
Show full item record
Abstract
Vertically aligned carbon nanotubes have been grown using Ni as catalyst by plasma enhanced chemical vapor deposition system (PECVD) in various pre-patterned substrates. Ni was thermally evaporated on silicon substrates with anodized alumina mask prepared in different methods including 2 step anodization of porous alumina template and interference lithography assisted array of pores. The templates helped to define Ni nanodots inside the pores which in turn catalyzed the growth of carbon nanotubes inside the PECVD system at temperature of 700-750C using mixture of ammonia and acetylene gases. The resulting well-aligned multi-walled carbon nanotubes were further investigated using SEM, TEM and Raman spectroscopy. The size, shape and structure of the grown carbon nanotubes were also discussed.
Date issued
2005-01
URI
http://hdl.handle.net/1721.1/7359
Series/Report no.
Advanced Materials for Micro- and Nano-Systems (AMMNS);
Keywords
Nickel, Carbon nanotubes, plasma enhanced chemical vapor deposition

Collections
  • Advanced Materials for Micro- and Nano-Systems (AMMNS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.