MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Three-dimensional virus scaffolds for energy storage and microdevice applications

Author(s)
Burpo, F. John (Fred John)
Thumbnail
DownloadFull printable version (21.42Mb)
Alternative title
3-dimensional virus scaffolds for energy storage and microdevice applications
3D virus scaffolds for energy storage and microdevice applications
Other Contributors
Massachusetts Institute of Technology. Dept. of Biological Engineering.
Advisor
Angela M. Belcher.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
With constantly increasing demand for lightweight power sources, electrode architectures that eliminate the need for conductive and organic additives will increase mass specific energy and power densities. The increased demand for lightweight power is coupled with increasing device miniaturization. As the scale of devices decreases, current battery technologies add mass on the same scale as the device itself. A dual functional electro-mechanical material that serves as both the device structural material and the power source would dramatically improve device integration and range for powered movement. To address the demand for lightweight power with the objective of a dual functional electro-mechanical material, the M 13 bacteriophage was used to create novel 3-dimensional nano-architectures. To synthesize 3-dimensional nanowire scaffolds, the M13 virus is covalently linked into a hydrogel that serves as a 3-dimensional bio-template for the mineralization of copper and nickel nanowires. Control of nanowire diameter, scaffold porosity, and film thickness is demonstrated. The nanowire scaffolds are found to be highly conductive and can be synthesized as free-standing films. To demonstrate the viability of the 3-dimensional nanowire networks for electrical energy storage, copper nanowires were galvanically displaced to a mixed phase copper-tin system. These tin based anodes were used for lithium rechargeable batteries and demonstrated a high storage capacity per square area and stable cycling approaching 100 cycles. To determine the viability of the 3-dimensional nanowire networks as dual functional electro-mechanical materials and the mechanical stability of processing intermediates, phage hydrogels, aerogels, and metal nanowire networks were examined with nano-indentation. The elastic moduli of the metal networks are in the range of open cell metal foams The demonstration of 3-dimensional virus-templated metal nanowire networks as electrically conductive and mechanically robust should facilitate their implementation across a broad array of device applications to include photovoltaics, catalysis, electrochromics, and fuel cells.
Description
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, February 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/73776
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.