MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Life-cycle assessment of wastewater treatment plants

Author(s)
Dong, Bo, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (8.604Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Eric E. Adams.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related to traditional industries with high carbon dioxide (CO2) emissions, such as power plants and transportation. However, the analyses of wastewater treatment plants (WWTPs) have drawn increasing attention, due to the intensive greenhouse gas emissions (GHG) from WWTPs. WWTPs have been listed in the 7 th place for both methane (CH 4) and nitrous oxide (N2O) total emissions. In addition, WWTPs indirectly contribute to a huge amount of CO2 emissions. The final results have shown that more than half of the carbon footprints from the La Gavia WWTP are from the indirect emissions of CO2, which is caused by the intensive energy consumption. The direct emissions of CH4 and N2O combined contribute more than 30 percent of GHG emission. The finally section of the thesis compares the environmental impacts of the La Gavia WWTP with case of no WWTP at all. It has been concluded that although the La Gavia WWTP increased the total carbon footprints, it has much better control of eutrophication potential (EP).
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 57-58).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/73783
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.