dc.contributor.advisor | Jerome J. Connor. | en_US |
dc.contributor.author | Nnamani, Nnabuihe | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering. | en_US |
dc.date.accessioned | 2012-10-26T18:06:56Z | |
dc.date.available | 2012-10-26T18:06:56Z | |
dc.date.copyright | 2012 | en_US |
dc.date.issued | 2012 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/74411 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2012. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 50-55). | en_US |
dc.description.abstract | The advent of modern structural systems, spurred by advances in construction methodology and high strength materials, has driven the height of modern skyscrapers beyond what was once deemed possible. Although science and technology has been able to increase the strength of building materials such as steel and concrete, their material stiffness has remained virtually unchanged. The end result is a wave of taller, slender and more flexible skyscrapers that are very susceptible to wind-induced excitations. Ever mindful of the fact that human comfort levels are affected by perceived structural responses, engineers must employ various strategies to satisfy serviceability constraints. This thesis presents an overview, in addition to successful applications, of the various aerodynamic and damping modifications that are used to control wind-induced motion in tall buildings. Finally, a modified gyrostabilizer, akin to those used in luxury yachts, is proposed as a possible active control mechanism. The feasibility of this device was studied using simple statics and rigid body dynamics. | en_US |
dc.description.statementofresponsibility | by Nnabuihe Nnamani. | en_US |
dc.format.extent | 55 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Civil and Environmental Engineering. | en_US |
dc.title | Strategies for mitigating wind-induced motion in tall buildings through aerodynamic and damping modifications | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Civil and Environmental Engineering | |
dc.identifier.oclc | 812878173 | en_US |