MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MATLAB implementation of an operational modal analysis technique for vibration-based structural health monitoring

Author(s)
Ojeda, Alejandro P
Thumbnail
DownloadFull printable version (6.625Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Jerome J. Connor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Vibration-based structural health monitoring (SHM) has become an attractive solution for the global monitoring and evaluation of damage in structures. Numerous damage detection schemes used in vibration-based SHM require knowledge of the modal properties of the structure under evaluation in its current state. The technique of operational modal analysis allows for these modal properties to be obtained by using the structure's dynamic response to ambient excitation. Using MATLAB, a type of operational modal analysis technique called time domain decomposition (TDD) based on [15] was implemented. The MATLAB TDD implementation was applied to the dynamic responses from two finite element models of simply-supported beams and their modal frequencies and shapes were extracted. The first three modal frequencies were obtained with less than 6 percent error from the actual values and the fundamental mode shape values obtained contained negligible deviations from the actual mode shape values. However, the higher order mode shapes obtained were more inaccurate, suggesting limitations to the current MATLAB TDD implementation. Lastly, changes to the moment of inertia of the simply-supported beam models were used to simulate damage in the finite element models and cause their fundamental mode frequency to change. The MATLAB TDD implementation was able to distinguish changes in the fundamental frequency of both finite element models with a resolution of approximately 1.7 radians per second (7.2 percent).
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 72-73).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74412
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.