MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solar-thermal hybridization of Advanced Zero Emissions Power Plants

Author(s)
El Khaja, Ragheb Mohamad Fawaz
Thumbnail
DownloadFull printable version (7.294Mb)
Alternative title
Solar-thermal hybridization of AZEP
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Alexander Mitsos.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but suffer from high costs of power production and temporal variations. On the other hand, Carbon Capture and Sequestration allows the continued use of fossil fuels without the CO2 emissions but it comes at an energetic penalty. The Advanced Zero Emissions Plant (AZEP) minimizes this energy loss by making use of Ion Transport Membrane (ITM)-based oxy-combustion to reduce the cost of carbon dioxide separation. This work seeks to assess if there are any thermodynamic gains from hybridizing solar-thermal energy with AZEP. The particular focus is hybridizing of the bottoming cycle with supplemental solar heating. A simple model of parabolic solar trough was used to hybridize a model of the AZEP cycle in ASPEN Plus*. Two cycle configurations are studied: the first uses solar parabolic troughs to indirectly vaporize high pressure steam through Therminol and the second uses parabolic troughs to directly preheat the high pressure water stream prior to vaporization. Simulations of the solar vaporizer hybrid by varying the total area of collectors (holding fuel input constant) show an increase of net electric output from 439MW for the non-hybridized AZEP to 533MW with an input solar share of 38.8%. The incremental solar efficiency is found to be around 16% for solar shares of input ranging from 5% to 38.8%. Moreover, simulations of variable solar insolation for collector area of 550,000 m2 , show that incremental solar efficiency increased with solar insolation reaching a plateau around 17%. Simulations of the direct solar preheater, show a net electric output of 501.3 MW for a solar share of 35%, (an incremental solar efficiency of 13.73%). The power generation and hence incremental efficiency is lower than in hybridization with steam vaporization with the same input solar share. Synergy analysis for the steam vaporization hybrid indicates no thermodynamic gains from hybridization.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 43-44).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74434
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.