MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design, fabrication, and characterization of a motion stage for scalable imprinting of DNA nanowires

Author(s)
LaColla, John J. (John Joseph)
Thumbnail
DownloadFull printable version (7.230Mb)
Alternative title
Motion stage for scalable imprinting of DNA nanowires
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Martin L. Culpepper.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis work examines the scalability of an imprinting stage utilizing parallel self-aligning mechanisms in a DNA combing and imprinting (DCl) process. Scalability is vital in developing efficient, low-cost and high-yield manufacturing processes, and improving the scalability of the DCI imprinting process will benefit biomedical research by enabling the affordable and scalable production of micro/nanoarrays for drug discovery, protein isolation, nanofluidics, and other applications. Previous work on the DCI process has primarily focused on the mechanics of the imprinting process rather than scale, and misalignments between the stamp and slide surfaces make it difficult to increase the scale without drastically increasing the complexity of the system, particularly when a 3 degree of freedom positioning device is used. Herein, a 1 degree of motion stage with 3 independent, passive self-aligning mechanisms is demonstrated to achieve high performance at 3 times the scale of previous devices. The influence of kinematic coupling repeatability, parallelism, and linear motion parasitics on the performance of the imprinting device was identified, and the device's performance was measured. The repeatability of the kinematic couplings and the magnitude of the parasitic motions were found to exceed the gage resolution of 12.7 [mu]m, and the initial parallelism variation of the stage is less than 140 [mu]m. A mathematical model to quantify the scalability of the device was also developed by examining its ability to handle misalignments in the stage, stamp, and slide alignment. Analysis with the model demonstrated the ability of the device to accommodate maximum misalignments ranging from 3.9° to 9.3°, confirming the minimal performance-scale tradeoff of a 1 degree of freedom motion stage. Through this analysis, this thesis demonstrates the effectiveness of parallel, self-aligning stamp mechanisms in a scalable DCI process, and provides a framework for future development of scalable imprinting stages.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 71).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74447
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.