MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hierarchical superhydrophobic aluminum surfaces for condensation applications

Author(s)
Lopez, Ken, S.B. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (5.026Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Evelyn N. Wang.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Many existing industrial systems, including thermal desalination plants and air conditioning systems, involve the process of condensation and are heavily dependent on this process for achieving adequate levels of energy efficiency. In order to obtain these levels of efficiency, condensation heat transfer must be optimized through the application of dropwise condensation. One ongoing solution for improving the performance of dropwise condensation is the implementation of superhydrophobic structures and chemistries on condensing surfaces. Aluminum, being a heavily utilized material in many condensing systems and other industrial applications, is the subject of the present study. This thesis presents methods for synthesizing aluminum surfaces to produce microstructured morphologies through chemical etching with hydrogen chloride and oxidation with sodium hydroxide. After functionalization of these surfaces with a hydrophobic surface coating, the surfaces were tested for condensation using optical microscopy and a high quality environmental chamber. From experimentation, condensed droplets on these surfaces were unable to achieve the proper Wenzel to Cassie-Baxter transition and produce a jumping behavior which is a necessary criterion for superhydrophobic condensation. However, the HCl etched aluminum surface was able to achieve heat transfer rates greater than the smooth, filmwise aluminum surface by a factor of 2 and greater than the smooth, dropwise aluminum surface by a factor of 5/3. This implies that these structures were still capable of improving heat transfer rates despite their inability to surpass the energy barrier required for superhydrophobic condensation.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 51).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74448
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.