MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis of mono-to-multi-layer graphene for transparent electrode applications

Author(s)
Choi, Minseok
Thumbnail
DownloadFull printable version (14.25Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Jing Kong.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, mono-to-multilayer graphene for transparent electrode applications was synthesized by Atmospheric Pressure Chemical Vapor Deposition (APCVD) and the key factors that determine the electrical and optical properties of the graphene were isolated. This work involves optimizing APCVD conditions to grow the best quality graphene for transparent electrode applications as well as explaining the underlying mechanisms behind APCVD. The effects of methane and hydrogen in the growth step were studied along with the impact of the annealing step. Growth without hydrogen was also investigated. Sheet resistance, transmittance, and mobility data with carrier concentration information were obtained and analyzed for each growth condition. This work explored a large set of APCVD conditions with focus towards the electrical and optical properties; therefore it will be greatly beneficial for researchers who seek to the high quality graphene for the transparent electrodes and other electronic applications.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 82-83).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74458
Department
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Master's degree
  • Mechanical Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.