MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Innovation in Manufacturing Systems and Technology (IMST)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Innovation in Manufacturing Systems and Technology (IMST)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical Simulation of Electroosmotic Flow with Step Change in Zeta Potential

Author(s)
Chen, X.; Lam, Yee Cheong; Chen, X. Y.; Chai, J.C.; Yang, C.
Thumbnail
DownloadIMST018.pdf (167.5Kb)
Metadata
Show full item record
Abstract
Electroosmotic flow is a convenient mechanism for transporting polar fluid in a microfluidic device. The flow is generated through the application of an external electric field that acts on the free charges that exists in a thin Debye layer at the channel walls. The charge on the wall is due to the chemistry of the solid-fluid interface, and it can vary along the channel, e.g. due to modification of the wall. This investigation focuses on the simulation of the electroosmotic flow (EOF) profile in a cylindrical microchannel with step change in zeta potential. The modified Navier-Stoke equation governing the velocity field and a non-linear two-dimensional Poisson-Boltzmann equation governing the electrical double-layer (EDL) field distribution are solved numerically using finite control-volume method. Continuities of flow rate and electric current are enforced resulting in a non-uniform electrical field and pressure gradient distribution along the channel. The resulting parabolic velocity distribution at the junction of the step change in zeta potential, which is more typical of a pressure-driven velocity flow profile, is obtained.
Date issued
2005-01
URI
http://hdl.handle.net/1721.1/7457
Series/Report no.
Innovation in Manufacturing Systems and Technology (IMST);
Keywords
Electroosmotic flow, Electrical double-layer, Pressure-driven flow, Zeta potential

Collections
  • Innovation in Manufacturing Systems and Technology (IMST)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.