MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Molecular Engineering of Biological and Chemical Systems (MEBCS)
  • View Item
  • DSpace@MIT Home
  • Singapore-MIT Alliance (SMA)
  • Molecular Engineering of Biological and Chemical Systems (MEBCS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Association Behavior of Biotinylated and Non-Biotinylated PolyEthylene Oxide-b-Poly(2-(Diethylamino)Ethyl Methacrylate)

Author(s)
Tan, J. F.; Ravi, P.; Too, Heng-Phon; Hatton, T. Alan; Tam, K. C.
Thumbnail
DownloadMEBCS002.pdf (18.03Kb)
Metadata
Show full item record
Abstract
Biotinylated and non-biotinylated copolymers of ethylene oxide (EO) and 2-(diethylamino)ethyl methacrylate (DEAEMA) were synthesized by the atom transfer radical polymerization technique (ATRP). The chemical compositions of the copolymers as determined by NMR are represented by PEO₁₁₃PDEAEMA₇₀ and biotin-PEO₁₀₄PDEAEMA₉₃ respectively. The aggregation behavior of these polymers in aqueous solutions at different pHs and ionic strengths was studied using a combination of potentiometric titration, dynamic light scattering (DLS), static light scattering (SLS), and transmission electron microscopy (TEM). Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers form micelles at high pH with hydrodynamic radii (Rh) of about 19 and 23 nm, respectively. At low pH, the copolymers are dispersed as unimers in solution with Rh of about 6-7 nm. However, at a physiological salt concentration (cs) of about 0.16M NaCl and a pH of 7-8, the copolymers form large loosely packed Guassian chains, which were not present at the low cs of 0.001M NaCl. The critical micelle concentrations (CMC) and the cytotoxicity of the copolymers were investigated to determine a suitable polymer concentration range for future biological applications. Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers possess identical CMC values of about 0.0023 mg/g, while the cytotoxicity test indicated that the copolymers are not toxic up to 0.05mg/g (> 83% cell survival at this concentration).
Date issued
2005-01
URI
http://hdl.handle.net/1721.1/7473
Series/Report no.
Molecular Engineering of Biological and Chemical Systems (MEBCS);
Keywords
PEO113PDEAEMA70, biotin-PEO104PDEAEMA93, Rh, cs, polymer aggregation behavior, aqueous solutions

Collections
  • Molecular Engineering of Biological and Chemical Systems (MEBCS)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.