Show simple item record

dc.contributor.advisorJovan Popović.en_US
dc.contributor.authorAbe, Yeuhien_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-11-19T19:15:33Z
dc.date.available2012-11-19T19:15:33Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/74887
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 103-107).en_US
dc.description.abstractIn this thesis, I describe a method of animating characters using physical simulation. The main advantage of this approach, verses traditional keyframing methods, is that the animated character can react to physical interactions. These reactions can be synthesized in real-time in interactive applications, such as video games, where traditional approaches can only playback pre-recorded sequences. Physically simulating a character requires a controller, but creating a controller is known to be a challenging task, especially when animation concerns about the style of the motion are taken into consideration. This thesis describes a method of generating a controller automatically and quickly from an input motion. The stylistic aspects of the controller are particularly easy to control, as they are a direct result of the input motion. In order to generate a controller from an input motion, I address two main challenges. First, the input motion must be rectified (minimally modified) to ensure that it is physically plausible. Second, a feedback strategy must be formulated to generate control forces during the simulation. The motion rectification problem is addressed by formulating a fast trajectory optimization that solves for a reference motion. The reference minimally deviates from the input motion to satisfy physical constraints. The second challenge is addressed by employing a novel phase-indexed controller that uses a combination of local and global feedback strategies to keep the character tracking the reference motion. Beyond tracking just a single reference motion, I also demonstrate how variation to a input motion can be automatically synthesized using the same trajectory optimization method used in the rectification process, and how these variations can be sequenced, using optimal control, to accomplish various goals.en_US
dc.description.statementofresponsibilityby Yeuhi Abe.en_US
dc.format.extent107 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleA phase-indexed tracking controller for interactive physical simulation of animated charactersen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc813960020en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record