Show simple item record

dc.contributor.advisorDavid R. Karger and Robert C. Miller.en_US
dc.contributor.authorBernstein, Michael Scotten_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-11-19T19:15:40Z
dc.date.available2012-11-19T19:15:40Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/74888
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 217-237).en_US
dc.description.abstractCrowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor computation could support alone. Unfortunately, crowd work is error-prone and slow, making it difficult to incorporate crowds as first-order building blocks in software systems. I introduce computational techniques that decompose complex tasks into simpler, verifiable steps to improve quality, and optimize work to return results in seconds. These techniques develop crowdsourcing as a platform so that it is reliable and responsive enough to be used in interactive systems. This thesis develops these ideas through a series of crowd-powered systems. The first, Soylent, is a word processor that uses paid micro-contributions to aid writing tasks such as text shortening and proofreading. Using Soylent is like having access to an entire editorial staff as you write. The second system, Adrenaline, is a camera that uses crowds to help amateur photographers capture the exact right moment for a photo. It finds the best smile and catches subjects in mid-air jumps, all in realtime. Moving beyond generic knowledge and paid crowds, I introduce techniques to motivate a social network that has specific expertise, and techniques to data mine crowd activity traces in support of a large number of uncommon user goals. These systems point to a future where social and crowd intelligence are central elements of interaction, software, and computation.en_US
dc.description.statementofresponsibilityby Michael Scott Bernstein.en_US
dc.format.extent237 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleCrowd-powered systemsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc813960151en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record