MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Propeller design optimization for tunnel bow thrusters in the bollard pull condition

Author(s)
Wilkins, James R., IV
Thumbnail
DownloadFull printable version (17.58Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Chryssostomos Chryssostomidis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Tunnel bow thrusters are often used by large ships to provide low-speed lateral maneuverability when docking. Required to provide high thrust while essentially at a standstill, the design point for these thrusters is the bollard pull condition. Traditionally, the term bollard pull refers to the amount of force a tug can apply to a bollard when secured to a pier. Here, the bollard pull condition is used to describe a propeller with no flow over it except for that induced by its own rotation. Conventional propeller design is primarily performed for an optimal vessel speed or range of speeds. OpenProp, a propeller design code based on lifting line theory, is a numerical model capable of design and analysis of such propellers. It has been experimentally validated for standard design conditions in an external flow, but until now has been incapable of design with no external fluid velocity component applied. Recent updates to the model now allow for bollard pull design work. This project is the first application of the OpenProp model update. Propellers are designed for both open water and ducted (tunnel) applications in OpenProp. Propeller geometry design refinement by coupling MTFLOW, an Euler Equation viscous flow solver, with PBD-14, a lifting surface design program for marine propulsors is examined. An experimental apparatus is constructed to test the propeller designs and validate the OpenProp model. A range of off-design operating conditions are analyzed and results are presented.
Description
Thesis (Nav. E. and S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 50-51).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74896
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.