Show simple item record

dc.contributor.advisorDavid R. Wallace.en_US
dc.contributor.authorPenn, James Douglassen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2012-11-19T19:17:28Z
dc.date.available2012-11-19T19:17:28Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/74908
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 127-129).en_US
dc.description.abstractMultiple degree of freedom actuation typically requires one actuator for each degree of freedom, where each actuator requires its own heavy and expensive transducer to transform an electrical input signal into a useful mechanical output. Mechanisms can be used to split the output of a single motor, but the resulting systems are often complex, large, heavy, and noisy. Some also lack true independence of outputs. This thesis develops and demonstrates a novel system for multiple degree of freedom actuation using a single transducer to achieve independent, bi-directional control of multiple degrees of freedom. The resulting system is mechanically simple, compact, lightweight, easy to control, and potentially inexpensive. The Multiple Degree of freedom Actuator (MDA) comprises i) a single vibrating transducer and ii) a parallel network of resonators. Each resonator is tuned to its own unique resonant frequency and drives its own degree of freedom. First, it is shown that the MDA can actuate independently multiple degrees of freedom with a single transducer by selectively exciting the resonant frequencies of one or more resonators, which then drive their respective degrees of freedom. Both numerical simulation and physical prototypes are used to verify the results. Second, a simple, compact resonator/rectifier mechanism is developed and fabricated using flexures that convert oscillating motion of a resonator to useful, continuous, bi-directional rotation of an output rotor without crosstalk between outputs. Third, the theoretical efficiency of the MDA, driven by an electromagnetic transducer, is derived. An efficient, low-moving-mass moving magnet transducer is developed and shown to greatly improve theoretical system efficiency. Finally, a hypocycloid speed reducer mechanism is developed and fabricated to achieve a very high reduction ratio in a compact package with greater simplicity and improved performance.en_US
dc.description.statementofresponsibilityby James Douglass Penn.en_US
dc.format.extent129 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleA Multiple Degree of Freedom Actuator using a single vibrating transduceren_US
dc.title.alternativeMDA using a single vibrating transduceren_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc815449175en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record