Show simple item record

dc.contributor.advisorAlexandra Techet.en_US
dc.contributor.authorGruber, Timothy J. (Timothy James)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2012-11-19T19:18:23Z
dc.date.available2012-11-19T19:18:23Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/74918
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 73-75).en_US
dc.description.abstractAn experimental analysis of a Venturi shrouded hydro turbine for wave energy conversion. The turbine is designed to meet the specific power requirements of a, Woods Hole Oceanographic Institute offshore monitoring buoy using a unique gumby hose mooring system. The buoy's mission is to monitor the Massachusetts Bay for Right whale vocalizations. The turbine needed to convert a suitable amount of energy without interfering with the buoy's overall survivability or mission readiness. The turbine was a Babinsten impulse bi-directional turbine which used sea water as the working fluid. Testing was conducted in a recirculating water tunnel, and two flow visualization techniques were applied. This was the first project in the MIT water tunnel since a major renovation and upgrade., and thus included a large amount of equipment set up and performance analysis. The turbine utilized a Venturi shaped shroud, with a maximum diameter of 25.4 cm contracting down to 10.0 cm diameter where the blades were located. Ultimately PIV images revealed that the Venturi shroud was creating a large stagnation region at, the turbine inlet. This stagnation region choked off flow through the turbine, resulting in poor power production. Subsequent testing revealed that the shroud without the turbine blades also produced a large stagnation region. casting doubt on the concept of Venturi shrouded turbines in general. The device failed to meet the requirements for the WHOI buoy and was not a suitable solution for converting the buoy to energy self sufficiency.en_US
dc.description.statementofresponsibilityby Timothy J. Gruber.en_US
dc.format.extent75 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleExperimental analysis of an energy self sufficient ocean buoy utilizing a bi-directional turbineen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc815725093en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record