MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mechanical Engineering
  • Mechanical Engineering - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable manufacturing of hierarchical nanostructures for thermal management

Author(s)
Love, Christopher J., Ph.D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (3.369Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Kripa K. Varanasi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The focus of this thesis is a new simple and scalable process to make surface coatings that have multiple length scales, or hierarchical features. Typically, the formation of hierarchical structures involves multiple steps and/or long processing times. In this new process, the hierarchical geometry is formed in a single step. The starting material-spherical copper powder-is oxidized in ambient air. Depending on the starting size of the powder, copper oxide nanowires may or may not form. Systematic thermogravimetric analysis (TGA) and in-situ x-ray diffraction (XRD) studies provide insights into the size-dependent thermal oxidation process. The proposed mechanism is supported by another interesting geometrical transformation: in the same single-step process, a large void is formed in the particles. The tunable nanowire growth is used to make new kinds of hierarchical coatings with enhanced heat-transfer performance in spray-cooling applications, which include nuclear reactor boiling, continuous casting of metals, and thermal management of electronics.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 24-26).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74926
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Mechanical Engineering - Master's degree
  • Mechanical Engineering - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.