MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive modal damping for advanced LIGO suspensions

Author(s)
Shapiro, Brett N. (Brett Noah)
Thumbnail
DownloadFull printable version (24.93Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Nergis Mavalvala and Kamal Youcef-Toumi.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Gravitational waves are predicted to exist by Einstein's Theory of General Relativity. The waves interact extremely weakly with the surrounding universe so only the most massive and violent events such as supernovae and collisions of black holes or neutron stars produce waves of sufficient amplitude to consider detecting. The Laser Interferometer Gravitational-Wave Observatory (LIGO) aims to pick up the signals from these very faint waves. LIGO directs much of its effort to the areas of disturbance rejection and noise suppression to measure these waves. The work in this thesis develops an adaptive modal damping control scheme for the suspended optics steering the laser beams in the LIGO interferometers. The controller must damp high quality factor mechanical resonances while meeting strict noise and disturbance rejection requirements with the challenges of time varying ground vibrations, many coupled degrees of freedom, process noise, and nonlinear behavior. A modal damping scheme is developed to decouple the complex system into many simpler systems that are easily controlled. An adaptive algorithm is then built around the modal damping scheme to automatically tune the amount of damping applied to each mode to achieve the optimal trade-off between disturbance rejection and noise filtering for all time as the non-stationary stochastic disturbances evolve. The adaptation is tuned to provide optimal sensitivity to astrophysical sources of gravitational waves. The degree of sensitivity improvement is analyzed for several classes of these sources.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 179-183).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74933
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.