MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Capturing skin properties from dynamic mechanical analyses

Author(s)
Sandford, Erika J. (Erika Jaye)
Thumbnail
DownloadFull printable version (9.585Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Lynette A. Jones.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Existing skin mechanical testing devices focus on measuring skin elasticity and are not tailored to assess the dynamic behavior of skin. The mathematical techniques used to analyze data collected using these devices are often not optimal. A new dynamic mechanical device that measures the linear dynamics of skin was developed and tested. The mechanical properties of skin were evaluated in experiments in which the stiffness and damping parameter were measured at different locations on the arm and hand, when stratum corneum hydration was varied by controlled changes in environmental humidity, and following the application of film-forming polymers. Parallel measurements were made with the Cutometer® so that the two devices could be compared. The findings revealed that reliable and valid measurements of skin mechanical properties can be obtained from the device. The stiffness of the skin was shown to vary significantly as a function of skin site, changes in stratum corneum hydration, and following the application of the polymer films. Changes in the damping parameter were less consistently associated with varying the condition of the skin. The high reliability and speed of measurement make this device and analytic procedure an attractive option for testing skin mechanics.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 76-79).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74941
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.