Show simple item record

dc.contributor.advisorEvelyn N. Wang.en_US
dc.contributor.authorThoms, Matthew Wen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2012-11-19T19:20:46Z
dc.date.available2012-11-19T19:20:46Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/74946
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 86-88).en_US
dc.description.abstractIn concentrated solar power (CSP) systems, high temperature heat transfer fluids (HTFs) are responsible for collecting energy from the sun at the solar receiver and transporting it to the turbine where steam is produced and electricity is generated. Unfortunately, many high temperature HTFs have poor thermal properties that inhibit this process, including specific heat capacities which are half that of water. In an effort to enhance the effective heat capacity of these high temperature HTFs and thus increase the efficiency of the CSP systems, adsorption energy at the liquid-solid interface was investigated as a mechanism for increased thermal capacity. Solid ceramic nanoparticles were dispersed in several molten salts at 1-2% by mass with diameters ranging from 5 nm to 15 nm to provide a significant available surface area for adsorption at the particle-molten salt interface. After successful nanofluid synthesis, differential scanning calorimetry (DSC) was used to measure anomalous deviations from the expected heat capacity and enthalpy of fusion values in the nanofluids. The variation in the sensible and latent heat values was determined to be dependent on the presence of sub-100 nm particles and attributed to a layer of salt that remains adsorbed to the surface of the nanoparticles after the bulk of the salt has melted. The adsorbed salt layer is expected to desorb at a higher temperature, providing an increased effective thermal capacity in the vicinity of this desorption temperature. A thermal analysis technique utilizing DSC was proposed to approximate the thickness of the adsorbed layer at the liquid-solid interface, a value that has previously only been obtained using simulation or transmission electron microscopy. More specifically, the adsorbed layer of LiNO3 on Al2O3 particles was determined to be 5.3-7.1 nm thick, similar to the 1-3 nm layers that have been observed in literature for simple, monatomic fluids. The results provide new insight into the nature of adsorption at the liquid-solid interface in more complex fluid and particle systems that can be harnessed for enhanced thermal capacity in HTFs.en_US
dc.description.statementofresponsibilityby Matthew W. Thoms.en_US
dc.format.extent88 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleAdsorption at the nanoparticle interface for increased thermal capacity in solar thermal systemsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc816562253en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record