MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A simulation-based assessment of plug-in hybrid electric vehicle architectures

Author(s)
Sotingco, Daniel (Daniel S.)
Thumbnail
DownloadFull printable version (2.664Mb)
Alternative title
simulation-based assessment of PHEV architectures
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Jerome Milgram.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture PHEVs, as well as parallel and split PHEVs with ultracapacitors, were performed in Autonomie, the vehicle simulation package released by Argonne National Laboratory as the successor to the Powertrain System Analysis Toolkit (PSAT). The PHEV configurations were parameterized by battery capacity, motor peak power, engine peak power, and ultracapacitor capacity if applicable. Results were compared to EPA data for the Chevrolet Volt and Toyota Prius, showing close agreement on values for fuel consumption, charge-depleting range, and acceleration time. While most PHEVs today are of the series or split variety, analysis of the simulation results indicates that including features from a parallel architecture could improve performance without undue additional cost from components. In addition, ultracapacitors were found to have a significant positive effect on all-electric fuel consumption. Furthermore, pricing models were created to predict approximate MSRP and 5-year cost-to-own for future PHEVs. These models were incorporated into a graphical user interface built using MATLAB that allows access to the simulation results in a way that is accessible to the average consumer.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Page 85 blank. Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 81-84).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74950
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.