MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rotary bed reactor for chemical-looping combustion with carbon capture

Author(s)
Zhao, Zhenlong
Thumbnail
DownloadFull printable version (16.17Mb)
Alternative title
Rotary bed reactor for CLC with carbon capture
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Ahmed F. Ghoniem.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently almost all the research has been focused on developing CLC based inter-connected fluidized bed reactors. A new rotating reactor concept for gas fueled CLC is proposed. In the reactor, a solid wheel rotates between the fuel and the air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotating wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure and it is heated from 823K to 1245K by fuel combustion. The rotary reactor design for a thermal capacity of 1MW has been performed using a simplified model that was developed to predict the performances of the reactor. Preliminary analysis shows that both the fuel conversion efficiency and the carbon separation efficiency are close to unity. The wheel temperature fluctuation is small. There is great potential for further improvement of the construction and operating conditions, which will be followed up in the future.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
"June 2012." Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 115-127).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/74957
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.