MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fracture Detection And Characterization

Author(s)
Toksoz, M. Nafi; Guler, Fatih
Thumbnail
Download1988.7 Toksoz_Guler.pdf (882.1Kb)
Other Contributors
Massachusetts Institute of Technology. Earth Resources Laboratory
Metadata
Show full item record
Abstract
The effects of fractures on full waveform acoustic logs are studied on the basis of field observations, available theoretical models, and a series of ultrasonic laboratory experiments. Results from diffusion models applicable to fine microfractures and finite difference models of isolated fractures are reviewed. Laboratory experiments are carried out with fine microfractures around the borehole in a Lucite model, and isolated single fractures in aluminum models. Cases of horizontal and inclined (45°) fractures are studied as a function of fracture aperture and frequency of Stoneley waves. A vertical fracture model is also studied. Results indicate that the effect of different fractures are manifested differently on P, S, pseudo-Rayleigh, and Stoneley waves. Micro-fractures surrounding a borehole attenuate Stoneley waves most strongly. Vertical fractures attenuate Stoneley waves more strongly than other phases in the wave train. Horizontal and inclined fractures have a greater effect on P and S waves than on Stoneley waves.
Date issued
1988
URI
http://hdl.handle.net/1721.1/75102
Publisher
Massachusetts Institute of Technology. Earth Resources Laboratory
Series/Report no.
Earth Resources Laboratory Industry Consortia Annual Report;1988-07

Collections
  • ERL Industry Consortia Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.