MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Permeability Estimation From Velocity Anisotropy In Fractured Rock

Author(s)
Gibson, Richard L., Jr.; Toksoz, M. Nafi
Thumbnail
Download1990.8 Gibson_Toksoz.pdf (925.8Kb)
Other Contributors
Massachusetts Institute of Technology. Earth Resources Laboratory
Metadata
Show full item record
Abstract
Cracks in a rock mass subjected to a uniaxial stress will be preferentially closed depending on the angle between the fracture normal vectors and the direction of the applied stress. If the prestress fracture orientation distribution is isotropic, the effective elastic properties of such a material after application of the stress are then transversely isotropic due to the overall alignment of the cracks still open. Velocity measurements in multiple directions are used to invert for the probability density function describing orientations of crack normals in such a rock. This is accomplished by expanding the crack orientation distribution function into generalized spherical harmonics. The coefficients in this expansion are functions of the crack density and the crack aspect ratio distribution. The information on fracture distribution obtained from the velocity inversion allows an estimation of the anisotropic permeability of the fractured rock system. Permeability estimates are based on the number of cracks open of each aspect ratio, and the contribution of a given crack is weighted by the cosine of the angle between the crack and the direction of the applied pressure gradient. This approach yields a prediction of permeability as a function of the angle from the uniaxial stress axis. The inversion for crack orientation is applied to ultrasonic velocity measurements on Barre granite, and permeability predictions for this sample are presented. The inversion results are good and reproduce velocity measurements well, and the permeability predictions show some of the expected trends. Initial comparisons of the predictions with available permeability data, however, show deviations suggesting that further information on partial crack closure and connectivity of cracks should be included in the permeability model.
Date issued
1990
URI
http://hdl.handle.net/1721.1/75162
Publisher
Massachusetts Institute of Technology. Earth Resources Laboratory
Series/Report no.
Earth Resources Laboratory Industry Consortia Annual Report;1990-08

Collections
  • ERL Industry Consortia Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.