MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling Fluid Flow In Heterogeneous And Anisotropic Porous Media

Author(s)
Zhao, Xiaomin; Toksoz, M. Naft
Thumbnail
Download1991.11 Zhao_Toksoz.pdf (622.0Kb)
Other Contributors
Massachusetts Institute of Technology. Earth Resources Laboratory
Metadata
Show full item record
Abstract
Permeability distribution in reservoirs is very important for the flow of water or oil and gas. In this study, the effects of various heterogeneous permeability distributions on the flow field are simulated using the finite difference technique. We have simulated the flow for two types of heterogeneous distributions, one is Gaussian and the other is self-similar or fractal, the latter being much rougher than the former. The results show that the flow is not sensitive to the roughness of the distribution. In the case of lineated heterogeneities, anisotropy in the flow properties occurs. The anisotropy is not very significant if the lineated highly permeable regions are surrounded by less permeable regions. However, in the case of lineated fractures, where the background permeability is small, the flow is very sensitive to the direction of the lineation, such anisotropy can produce orders of magnitude difference in permeability. Furthermore, it is shown that the degree of anisotropy depends on the connectivity of the fractures. The anisotropy decreases with decreasing connectivity.
Date issued
1991
URI
http://hdl.handle.net/1721.1/75182
Publisher
Massachusetts Institute of Technology. Earth Resources Laboratory
Series/Report no.
Earth Resources Laboratory Industry Consortia Annual Report;1991-11

Collections
  • ERL Industry Consortia Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.