A System Dynamics Study of the Nuclear Fuel Cycle with Recycling: Options and Outcomes for the US and Brazil
Author(s)
Busquim e Silva, R.; Kazimi, Mujid S.; Hejzlar, Pavel
DownloadNFC-101-TR.pdf (2.165Mb)
Other Contributors
Massachusetts Institute of Technology. Nuclear Fuel Cycle Program
Metadata
Show full item recordAbstract
A system dynamics simulation technique is applied to generate a new version of the
CAFCA code to study mass flows in the nuclear fuel cycle, and the impact of different
options for advanced reactors and fuel recycling facilities on the inventory and
distribution of transuranics (TRU). Several nuclear fuel cycle options are studied for U.S.
and Brazil markets, and special consideration is given to potential collaboration between
the two countries. This includes the impact of advanced nuclear technologies, under a
prescribed growth in demand for nuclear electricity, on demand for uranium resources,
uranium enrichment, and fuel reprocessing facilities, and on total cost of nuclear
electricity over the next few decades. Introduction of fuel recycling reduces the growing
demand for uranium, and the long-term need for storage of radioactive spent fuel.
However, the timing of introduction of recycling is important for proper technology
development, and the rate of deployment is restrained by the industrial capacity as well as
the desire for high utilization factor of the deployed facilities over their life time, and that
is reflected in the assessments.
The nuclear fuel cycle is modeled as a high level structure diagram, which provides an
overview of the interconnections among its blocks without showing all details, and as a
structure-policy diagram which details the decision rules applied to the structure. The
high level structure diagram represents the nuclear fuel cycle; the fleet of thermal and
fast reactors; the separation and reprocessing plants; the waste repository; the spent fuel
storage; and the paths for the fuel and waste mass transfer. In addition, an economic
model is added to study different cases under the same assumptions. The economic model
is based on the forecasted need for advanced reactors and recycling facilities, assuming
that all costs are recovered within the nuclear energy system.
Different recycling technology options are included in the code: (1) Thermal recycling in
LWRs using Combined Non-Fertile and UO2 Fuel (CONFU), (2) Recycling of TRU in
fertile-free fast cores of Actinide Burner Reactors (ABR); and (3) Fast recycling of TRU
with UO[subscript 2] in self-sustaining Gas-cooled Fast Reactors (GFR). Case studies for different
advanced technology introduction dates and for distinct TRU depletion rates are
examined. In particular, the code is 3 equipped to simulate the introduction of two
recycling technology options with a prescribed allocation of the TRU supply between
them.
The simulation results show that early introduction of the GFR recycling scheme leads to
the most significant reduction in uranium consumption and enrichment requirements,
thus delaying the eventual depletion date of uranium ore. The GFR requires less uranium
resources due to the use of TRU as recycled fuel and near unity fissile conversion ratio.
However, in a nonbreeding reactor system, the consumption of U continues to grow, and
the TRU needed to start fast reactors will be growing at a constrained rate. On the other
hand, the CONFU recycling scheme keeps the TRU inventory in the entire system well
below other schemes, and guarantees equilibrium between the generation and
consumption of transuranics without investments in fast reactors. CONFU incinerates
more TRU than the GFR and ABR schemes during the simulation period. Also, it reduces
the TRU sent to the repository for disposal by orders of magnitude. The ABR scheme
does the same but requires the introduction of fast reactors. Nevertheless, the CONFU
and ABR schemes have no significant impact on the amount of uranium resources
consumption or enrichment requirements.
Economic analysis indicates that the CONFU technology is more attractive at current
uranium prices, and that fast recycling becomes as attractive as thermal recycling at
higher uranium prices. The results also show that if a nuclear fuel cycle state/reactor state
collaboration with Brazil is started, there will be a significant impact on the U.S.
cumulative TRU inventory at interim storage, enrichment requirements, uranium
consumption, and number of advanced fuel facilities. The results show that a nuclear
partnership without the introduction of advanced nuclear technologies would not have
advantages for the U.S. Furthermore, a nuclear collaboration allows a higher ratio of fast
reactors to total installed nuclear electric capacity in the U.S.
Date issued
2008-11Publisher
Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Nuclear Fuel Cycle Program
Series/Report no.
MIT-NFC;TR-101