MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
  • DSpace@MIT Home
  • Earth Resources Laboratory
  • ERL Industry Consortia Technical Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reflection Moveout Inversion In Azimuthally Anisotropic Media: Accuracy, Limitation, And Acquisition

Author(s)
AI-Dajani, AbdulFattah; Alkhalifah, Tariq; Morgan, Dale
Thumbnail
Download1999.14 Al-Dajani et al.pdf (781.9Kb)
Other Contributors
Massachusetts Institute of Technology. Earth Resources Laboratory
Metadata
Show full item record
Abstract
Parameter estimation from elliptical variations in the normal-moveout (NMO) velocity in azimuthally anisotropic media is sensitive to the angular separation between the survey lines in 2D, or equivalently source-to-receiver azimuth in 3D, and to the set of azimuths used in the inversion procedure. The accuracy in estimating the orientation of the NMO ellipse, the parameter cr, in particular, is also sensitive to the strength of anisotropy. To invert for the parameters the NMO ellipse, at least three NMO-velocity measurements along distinct azimuth directions are needed. In order to maximize the accuracy and stability in parameter estimation, it is best to have the azimuths for the three source-to-receiver directions 60° apart. Having more than three distinct source-to-receiver azimuths (e.g., full azimuthal coverage) provides a useful data redundancy that enhances the quality of the estimates. In orthorhombic media, inverting for the semi-axes of the NMO-ellipse allows the computation of the difference in the anisotropic parameters δ[superscript (1)] and δ[superscript (2)]. Additional information such as well data, is necessary in order to determine δ[superscript (1)] and δ[superscript (2)]. Furthermore, the accuracy in estimating the semi-axes of the NMO-velocity ellipse is about the same for any strength of anisotropy. To maximize quality in the inversion process, it is recommended that at the design stage of seismic data acquisition to have small sector sizes (≤ 10°) with adequate fold and offset distribution. For three azimuth directions, 60° apart, to perform the inversion, an azimuthally anisotropic layer overlain by an azimuthally isotropic overburden (as might happen for fractured reservoirs) should have a time thickness, relative to the total time, of at least the ratio of the error in the NMO (stacking) velocity to the interval anisotropy strength of the fractured layer. Coverage along more than three azimuths, however, improves this limitation, which is imposed by Dix differentiation, by at most 50% depending on the number of observations (NMO Velocities) that enter the inversion procedure.
Date issued
1999
URI
http://hdl.handle.net/1721.1/75431
Publisher
Massachusetts Institute of Technology. Earth Resources Laboratory
Series/Report no.
Earth Resources Laboratory Industry Consortia Annual Report;1999-14

Collections
  • ERL Industry Consortia Technical Reports

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.