MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast distributed first-order methods

Author(s)
Chen, Annie I-An
Thumbnail
DownloadFull printable version (3.790Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Asuman Ozdaglar.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis provides a systematic framework for the development and analysis of distributed optimization methods for multi-agent networks with time-varying connectivity. The goal is to optimize a global objective function which is the sum of local objective functions privately known to individual agents. In our methods, each agent iteratively updates its estimate of the global optimum by optimizing its local function and exchanging estimates with others in the network. We introduce distributed proximal-gradient methods that enable the use of a gradient-based scheme for non-differentiable functions with a favorable structure. We present a convergence rate analysis that highlights the dependence on the step size rule. We also propose a novel fast distributed method that uses Nesterov-type acceleration techniques and multiple communication steps per iteration. Our method achieves exact convergence at the rate of O(1/t) (where t is the number of communication steps taken), which is superior than the rates of existing gradient or subgradient algorithms, and is confirmed by simulation results.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 91-94).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/75628
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.