Show simple item record

dc.contributor.advisorDavid J. Perreault.en_US
dc.contributor.authorHu, Jingying, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2012-12-13T18:48:08Z
dc.date.available2012-12-13T18:48:08Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/75637
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 158-166).en_US
dc.description.abstractThe mass and volume required for power electronics circuitry is a dominant obstacle to the miniaturization and integration of many systems. Likewise, power electronics with greater bandwidth and efficiency are becoming vital in many applications. To realize smaller and highly responsive power electronics at low voltages, this thesis explores devices, circuits, and passives capable of operating efficiently at very high frequencies (VHF, 30-300 MHz). Operation at these frequencies enables reduction of the numerical values and physical size of the passive components that dominate power converters, and enables increased bandwidth and transient performance which is valuable in a multitude of low-voltage and low-power applications. This thesis explores the scaling of magnetic component size with frequency, and it is shown that substantial miniaturization is possible with increased frequencies even considering material and heat transfer limitations. Moreover, the impact of frequency scaling of power converters on magnetic components is investigated for different design criteria. Quantitative examples of magnetics scaling are provided that clearly demonstrate the benefits and opportunities in VHF magnetics design. It is shown to utilize the advantages of frequency scaling on passive component size that system losses and other limitations must be considered. One such area that is examined is semiconductor device requirements, where through a combination of device layout optimization for cascode structures and integrated gate drive designs on a 0.35-um CMOS process, converter performance (i.e., loss and bandwidth) can be significantly improved in the VHF regime. In this thesis a dc-dc converter topology is developed that is suitable for low-voltage power conversion and employs synchronous rectification to improve efficiency. The converter is also comprised of a high-bandwidth and high-switching-frequency inverter topology that can dynamically adjust the output power from one-quarter to full power, while maintaining good efficiency. Furthermore, with its inherent capability of gate-width switching, the inverter can further reduce gating loss by one-half resulting in substantial performance improvements at light load operation. A major contribution of this thesis is the development of a synchronous rectifier operating in the VHF regime. VHF power conversion is especially challenging at low voltages due to poor efficiency resulting from rectification loss. To overcome diode rectification loss, the benefits of synchronous rectification are discussed in the context of a 100MHz class-E resonant rectifier, which results in a 2.5 x overall converter efficiency improvement. The culmination of the developed design techniques in passives, semiconductor devices, and circuit topologies is an experimental prototype of a miniaturized 100MHz, 1W power converter utilizing synchronous rectification.en_US
dc.description.statementofresponsibilityby Jingying Hu.en_US
dc.format.extent166 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDesign of low-voltage, high-bandwidth radio frequency power convertersen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc818216855en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record