MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse equalizer filter design for multi-path channels

Author(s)
Feng, Xue, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (3.845Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Alan V. Oppenheim.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, sparse Finite Impulse Response (FIR) equalizers are designed for sparse multi-path channels under a pre-defined Mean Squared Error (MSE) constraint. We start by examining the intrinsic sparsity of the Zero Forcing equalizers and the FIR Minimum MSE (MMSE) equalizers. Next the equalization MSE is formulated as a quadratic function of the equalizer coefficients. Both the Linear Equalizer (LE) and the Decision Feedback Equalizer (DFE) are analyzed. Utilizing the quadratic form, designing a sparse equalizer under a single MSE constraint becomes an 10-norm minimization problem under a quadratic constraint, as described in [2]. Three previously developed methods for solving this problem are applied, namely the successive thinning algorithm, the branch-and-bound algorithm, and the simple linear programming algorithm. Simulations under various channel specifications, equalizer specifications and algorithm specifications are conducted to show the dependency of the sparsity on these factors. The channels include the ideal discrete multipath channels and the Vehicular A multi-path channels in both the Single-Input-Single- Output (SISO) and the Multiple-Input-Multiple-Output scenarios. Additionally, the sparse FIR equalizer is designed for MIMO channels under two MSE constraints. This is formulated as an 10-norm minimization problem under two quadratic constraints. A sub-optimal solution by decoupling the two constraints is proposed.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 81-82).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/75657
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.