dc.contributor.advisor | Luis Fernando Velásquez-García. | en_US |
dc.contributor.author | Jayanty, Vivi | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2012-12-13T18:50:00Z | |
dc.date.available | 2012-12-13T18:50:00Z | |
dc.date.copyright | 2012 | en_US |
dc.date.issued | 2012 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/75659 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 67-71). | en_US |
dc.description.abstract | There is a need for microscale vacuum pumps that can be readily integrated with other MEMS and electronic components at the chip-scale level. Miniaturized ion pumps exhibit favorable scaling down because they are surface-limited and miniaturization increases the ratio between the active surface and the chamber volume, resulting in enhanced ionization and pump rates. Therefore, scaled-down ion pumps are a promising choice for a variety of applications including portable mass spectrometers and sub-mm wavelength vacuum amplifiers. Our micropump architecture consist of a field-emission electron source that is an array of double-gated isolated vertically aligned carbon nanotubes (VA-CNTs), an electronimpact- ionization region, and a non-evaporative ion-implantation getter. Single-gated VA-CNT FEAs were tested as field emitters in high vacuum (10-9 Torr). The current density of the tested device is ~0.5A/cm2 (total current of 0.4mA) and a field enhancement factor of 1.41 x106 V/cm was measured, which is comparable to the simulation results by COMSOL. Two ways to fabricate double-gated VA-CNT FEAs were reported: one has the focus gate in plane with the extractor gate and the other has the focus gate above the extractor gate. Due to problems on fabrication process of double-gated VA-CNTs (short circuit between emitters, extractor gate, and focus gate), we were not able to collect four-terminal measurement, electron-impact-ionization, and pump data. However, procedure on how to collect and analyze field emission data with two gates to find [beta]G and [beta]F was described. In addition, procedures on how to collect and analyze data on electron impact ionization pump were also presented. | en_US |
dc.description.statementofresponsibility | by Vivi Jayanty. | en_US |
dc.format.extent | 71 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Miniaturized electron-impact-ionization pumps using double-gated isolated vertically aligned carbon nanotube arrays | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 818652051 | en_US |