MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design, measurement, and analysis of oxygenated fluid pump system

Author(s)
Mason, Alexander M., IV (Alexander Martin)
Thumbnail
DownloadFull printable version (10.77Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Alexander H. Slocum.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The author sought out the opportunity to design and implement a system for pumping oxygenated fluid and mixing it with saline, for the purpose of providing sufficient levels of oxygen for patients undergoing forms of asphyxia. The machine is able to pump oxygenated fluid by means of a low-density polyurethane bellows, which is powered by a stepper motor. A peristaltic pump simultaneously pumps saline fluid in another branch of the system. The two branches come together, the fluids are mixed, and bubbles are removed before the fluid is ready to be injected into a patient. Solid modeling as well as machine tools were used to create the physical structure, while LabView was used as the program regulating the controls of the device. The pump operates and can successfully mix both fluids. Flow rate can be controlled via the LabView program, and variables such as force, displacement, and flow rate can be read as outputs. The modular design of the pump allows it to be easily upgraded or altered. Because of all these features, the pump is an excellent research tool for developing a method of mixing and injecting viscous oxygenated fluid.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 62).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/75666
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.