MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generating informative paths for persistent sensing in unknown environments

Author(s)
Soltero, Daniel Eduardo
Thumbnail
DownloadFull printable version (15.75Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Daniela Rus.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we present an adaptive control law for a team of robots to shape their paths to locally optimal configurations for sensing an unknown dynamical environment. As the robots travels through their paths, they identify the areas where the environment is dynamic and shape their paths to sense these areas. A Lyapunov-like stability proof is used to show that, under the proposed adaptive control law, the paths converge to locally optimal configurations according to a Voronoi-based coverage task, i.e. informative paths. The problem is first treated for a single robot and then extended to multiple robots. Additionally, the controllers for both the single-robot and the multi-robot case are extended to treat the problem of generating informative paths for persistent sensing tasks. Persistent sensing tasks are concerned with controlling the trajectories of mobile robots to act in a growing field in the environment in a way that guarantees that the field remains bounded for all time. The extended informative path controllers are proven to shape the paths into informative paths that are useful for performing persistent sensing tasks. Lastly, prior work in persistent sensing tasks only considered robotic systems with collision-free paths. In this thesis we also describe a solution to multi-robot persistent sensing, where robots have intersecting trajectories. We develop collision and deadlock avoidance algorithms and quantify the impact of avoiding collision on the overall stability of the persistent sensing task. Simulated and experimental results support the proposed approach.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 127-130).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/75687
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.