dc.contributor.advisor | Samuel Madden and Michael Stonebraker. | en_US |
dc.contributor.author | Malviya, Nirmesh | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2012-12-13T19:19:34Z | |
dc.date.available | 2012-12-13T19:19:34Z | |
dc.date.copyright | 2012 | en_US |
dc.date.issued | 2012 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/75716 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 63-66). | en_US |
dc.description.abstract | Fine-grained, record-oriented write-ahead logging, as exemplified by systems like ARIES, has been the gold standard for relational database recovery. In this thesis, we show that in modern high-throughput transaction processing systems, this is no longer the optimal way to recover a database system. In particular, as transaction throughputs get higher, ARIES-style logging starts to represent a non-trivial fraction of the overall transaction execution time. We propose a lighter weight, coarse-grained command logging technique which only records the transactions that were executed on the database. It then does recovery by starting from a transactionally consistent checkpoint and replaying the commands in the log as if they were new transactions. By avoiding the overhead of fine-grained, page-level logging of before and after images (and substantial associated I/O), command logging can yield significantly higher throughput at run-time. Recovery times for command logging are higher compared to ARIES, but especially with the advent of high-availability techniques that can mask the outage of a recovering node, recovery speeds have become secondary in importance to run-time performance for most applications. We evaluated our approach on an implementation of TPC-C in a main memory database system (VoltDB), and found that command logging can offer 1.5x higher throughput than a main-memory optimized implementation of ARIES. | en_US |
dc.description.statementofresponsibility | by Nirmesh Malviya. | en_US |
dc.format.extent | 66 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Recovery algorithms for in-memory OLTP databases | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 820020348 | en_US |