MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Perceptible changes in regional precipitation in a future climate

Author(s)
Solomon, Susan; Mahlstein, Irina; Portmann, Robert W.; Daniel, J. S.; Knutti, Reto
Thumbnail
Downloadsusan paper 4.pdf (704.1Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Evidence is strong that the changes observed in the Earth's globally averaged temperature over the past half-century are caused to a large degree by human activities. Efforts to document accompanying precipitation changes in observations have met with limited success, and have been primarily focussed on large-scale regions in order to reduce the relative impact of the natural variability of precipitation as compared to any potential forced change. Studies have not been able to identify statistically significant changes in observed precipitation on small spatial scales. General circulation climate models offer the possibility to extend the analysis of precipitation changes into the future, to determine when simulated changes may emerge from the simulated variability locally as well as regionally. Here we estimate the global temperature increase needed for the precipitation “signal” to emerge from the “noise” of interannual variability within various climatic regions during their wet season. The climatic regions are defined based on cluster analysis. The dry season is not included due to poor model performance as compared to measurements during the observational period. We find that at least a 1.4°C warmer climate compared with the early 20th century is needed for precipitation changes to become statistically significant in any of the analysed climate regions. By the end of this century, it is likely that many land regions will experience statistically significant mean precipitation changes during wet season relative to the early 20th century based on an A1B scenario.
Date issued
2012-03
URI
http://hdl.handle.net/1721.1/75743
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Geophysical Research Letters
Publisher
American Geophysical Union (AGU)
Citation
Mahlstein, Irina et al. “Perceptible Changes in Regional Precipitation in a Future Climate.” Geophysical Research Letters 39.5 (2012). ©2012 American Geophysical Union
Version: Final published version
ISSN
0094-8276

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.