MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Liquid foams of graphene

Author(s)
Alcazar Jorba, Daniel
Thumbnail
DownloadFull printable version (2.838Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
Advisor
Edwin L. Thomas.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Liquid foams are dispersions of bubbles in a liquid. Bubbles are stabilized by foaming agents that position at the interface between the gas and the liquid. Most foaming agents, such as the commonly used sodium dodecylsulfate, are surfactant molecules with linear or branched chain molecular structures. This thesis presents a new class of liquid foams made with a foaming agent having a sheet molecular structure. In these foams, air bubbles are encapsulated inside graphene shells. The shells have a concentric layered structure made of isophorone diamine modified graphene oxide sheets. The liquid foams of graphene were initially developed as an extractive step in the preparation of graphene-epoxy nanocomposites. Chapter 1 gives an introduction to polymer nanocomposites and graphene. Chapter 2 presents a novel processing method for graphene-epoxy nanocomposites. Chapter 3 deals with the structure, formation mechanism, stability and mechanical properties of the liquid foams of graphene. Chapter 4 reports on materials and methods. Finally, Chapter 5 summarizes the main conclusions of this work and proposes future directions for research.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2012.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student submitted PDF version of thesis.
 
Includes bibliographical references (p. 207-216).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/75842
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.