MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low energy cooling in multi-storey buildings for hot, arid climates

Author(s)
Mostafa, Amira M
Thumbnail
DownloadFull printable version (7.998Mb)
Alternative title
Low energy cooling in multi-story buildings for hot, dry climates.
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture.
Advisor
Timothy Johnson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis discusses passive and low energy cooling strategies and systems in hot arid climates. The choice of a certain strategy, as well as determining the appropriate cooling schemes for such a context becomes of prime importance in developing the optimum energy conscious building design. The motivation for working in this area of research stems for the need facing architects to start developing a serious sense for energy considerations in their architectural design, especially in existing and multi-storey buildings. Here, in this research, the different factors that govern the control of heat gain through the envelope of the building will be analyzed. Also, solutions to minimize the cooling load for dwellings will be suggested/provided; by means of selecting the adequate cooling systems (evaporative, convective, and radiative) that promote the optimum desired thermal comfort. This research concludes its technical analysis with an architectural design for two schemes; The first is a cooling system that can be applied to new buildings, or retrofitted to existing ones. It uses evaporative coolers and solar chimney systems at daytime. It also uses night-time forced ventilation to cool the ordinary slab. The second can be applied in new buildings. It uses evaporative coolers and solar chimney systems at day-time. It also uses night-time forced ventilation through cored slabs. This design, and these schemes, are perceived as a starting point for further development and more research.
Description
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1989.
 
Includes bibliographical references (leaves 122-125).
 
Date issued
1989
URI
http://hdl.handle.net/1721.1/76013
Department
Massachusetts Institute of Technology. Department of Architecture
Publisher
Massachusetts Institute of Technology
Keywords
Architecture.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.