MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A learning method for the approximation of discontinuous functions for stochastic simulations

Author(s)
Gorodetsky, Alex Arkady
Thumbnail
DownloadFull printable version (7.429Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Youssef Marzouk.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Surrogate models for computational simulations are inexpensive input-output approximations that allow expensive analyses, such as the forward propagation of uncertainty and Bayesian statistical inference, to be performed efficiently. When a simulation output does not depend smoothly on its inputs, however, most existing surrogate construction methodologies yield large errors and slow convergence rates. This thesis develops a new methodology for approximating simulation outputs that depend discontinuously on input parameters. Our approach focuses on piecewise smooth outputs and involves two stages: first, efficient detection and localization of discontinuities in high-dimensional parameter spaces using polynomial annihilation, support vector machine classification, and uncertainty sampling; second, approximation of the output on each region using Gaussian process regression. The discontinuity detection methodology is illustrated on examples of up to 11 dimensions, including algebraic models and ODE systems, demonstrating improved scaling and efficiency over other methods found in the literature. Finally, the complete surrogate construction approach is demonstrated on two physical models exhibiting canonical discontinuities: shock formation in Burgers' equation and autoignition in hydrogen-oxygen combustion.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 79-83).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/76101
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.