MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Aeronautics and Astronautics
  • Aeronautics and Astronautics - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vehicle health monitoring using stochastic constraint suspension

Author(s)
Rossi, Christopher, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (11.19Mb)
Alternative title
VHM using stochastic constraint suspension
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Jeffrey A. Hoffman and Russell Sargent.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Autonomous vehicle health monitoring (VHM) has been identified as a high priority technology for future space exploration in NASA's 2012 technology roadmap. Traditional VHM approaches are often designed for a specific application and are unable to detect and isolate a wide variety of faults. Proposed methods are often too computationally complex for NASA's manned flight software verification and validation (V&V) process. An innovative VHM algorithm is presented that addresses these weaknesses by integrating the constraint suspension technique with parity space and hypothesis testing. The approach relies on on-board sensor measurements, knowledge of control commands, and a modular mathematical system model to provide a VHM solution. Improvement over original constraint suspension is demonstrated using conceptual and numerical examples. Feasibility of the VHM method on a spacecraft is explored using a numerical simulation of a generic vehicle.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.
 
Pages 91 and 92 blank. Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 79-81).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/76108
Department
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Aeronautics and Astronautics - Master's degree
  • Aeronautics and Astronautics - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.