MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and optimization of a humidifier for an HDH system

Author(s)
St. John, Maximus Gladstone
Thumbnail
DownloadFull printable version (4.942Mb)
Alternative title
Design and optimization of a humidifier for an humidification dehumidification desalination system
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
John H. Lienhard V.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Two billion people around the world do not access to clean drinking water. 98% of deaths caused by water related illness occur in the developing world. The humidification dehumidification desalination system currently being developed at the Lienhard Research Laboratory is a water treatment technology with low operational requirements that make it ideal for operation in the developing world. Researchers in the lab have just developed a novel design methodology for optimizing the performance of an HDH system based on thermal balancing, similar to the methodology used in heat exchanger design. An experimental pilot sized unit was built to test this methodology on a packed bed humidifier. Non-dimensional entropy generation was shown to have a minimum value for varied mass flow ratio as well as for varied water inlet temperature. At its optimal performance condition, the humidifier built for this thesis has a temperature pinch of 2.8 °C and an enthalpy pinch of 14.8 kJ/kg dry air. For the first time in literature, this thesis has experimentally shown that the balanced condition of HCR=1 corresponds to the condition of minimum entropy generation, validating the design methodology previously proposed at the Lienhard Lab.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 55-56).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/76141
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.