MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Visualizing the dynamics of HIV-specific cytotoxic T-cells in extracellular matrix

Author(s)
Foley, Maria Hottelet
Thumbnail
DownloadFull printable version (12.81Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Biological Engineering.
Advisor
Darrell J. Irvine.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Cytotoxic lymphocytes (CTLs) traffic through tissues in search of antigen and mount protective immune responses against viral infections and cancer. While molecular mechanisms of CTL antiviral effector functions have been established in vitro, they have been defined in the absence of physiological dynamics and migration. Furthermore, longterm dynamics of single cells have been inaccessible in vivo, where brief imaging durations have been achieved (-30-60 min). Presently, several key aspects of CTL dynamics and function remain unknown: whether individual CTLs migrating within tissues kill multiple targets, if CTLs exhibit spatiotemporal coordination of effector functions, or if migrating CTLs effect these functions in different compartments. Thus, a mechanistic understanding of multidimensional CTL function might directly inform therapeutic strategies. In this thesis, we first developed an approach for long-term high-speed optical imaging of cellular dynamics for continuous periods of 24 hours. HIV-specific CTLs were visualized as they encountered CD4+ target cells within a three-dimensional extracellular matrix tissue model supporting migration of both CTLs and targets. Using this approach, we found that high-avidity CTLs engaged, arrested, and killed the first target encountered with near-perfect efficiency. These CTLs remained in contact with dead targets for hours, accumulating TCR signals and upregulating antiviral cytokine and chemokine secretion for >12 hours, but were refractory to killing additional targets. By contrast, lower-avidity CTLs exhibited poor efficiency and target migration directly impeded CTL killing. Thus, high-avidity CTLs coordinate multiple antiviral functions in four dimensions (3D space and time): effectively destroying the first detected infected cell during an initial "commitment phase", but rapidly transitioning to a prolonged "secretory phase." In vivo, coordination of lytic and non-lytic effector functions will direct the local inflammatory milieu and recruit additional effectors to the tissue. We conclude that the efficiency of antigen recognition by individual migrating CTLs is a critical, but previously undefined, parameter of CTL function. Furthermore, TCR avidity and initial CTL efficiency are prerequisites for sustained antiviral polyfunctionality; together these parameters define a highly effective, multidimensional CTL response, which may inform the design of increasingly effective vaccines.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2012.
 
CD-ROM contains copy of thesis in .pdf format and files in .mov format.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 76-84).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/76169
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.