Show simple item record

dc.contributor.advisorK. Dane Wittrup.en_US
dc.contributor.authorPirie, Christopher Men_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Biological Engineering.en_US
dc.date.accessioned2013-01-07T21:30:02Z
dc.date.available2013-01-07T21:30:02Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/76171
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractBiotherapeutics have revolutionized medicine with their ability to achieve unprecedented molecular recognition and mediate complex biological responses. The intracellular delivery of biotherapeutics is an unmet scientific challenge and medical need. A wide variety of different treatment modalities depend on not only on the ability to achieve intracellular delivery, but to do so in a targeted manner. An independently-targeted, two-molecule system was developed to accomplish intracellular delivery in a uniquely specific manner. Immunotoxins were designed based on the plant toxin gelonin and targeted towards the canonical cancer-specific antigens: epidermal growth factor receptor and carcinoembryonic antigen. Using quantitative internalization flow cytometry matched with controlled exposure cytotoxicity, the number of internalized gelonin immunotoxins required to induce apoptosis in a single cell was found to be ~5x10⁶ molecules. This threshold to cytotoxicity was conserved across all gelonin constructs regardless of antigen target, binding scaffold, affinity, or cell line. Next, cholesterol-dependent cytolysins were targeted to the same antigens by genetic fusion to engineered fibronectin domains. When combined in vitro, targeted gelonin and cytolysin had synergistic cytotoxic effects and the presence of cytolysin reduced the intracellular barrier to cytotoxicity to < 10⁴ immunotoxin molecules. In vivo, these molecules induced nonspecific, dose-limiting toxicities at varying levels and were cleared from the plasma at rates consistent with their molecular weight. Dosed individually, neither compound was capable of controlling tumor xenografts, but when combined in a delayed dosing scheme they inhibited tumor growth and induced apoptosis throughout xenografts as confirmed by histology. Mathematical modeling was informed by in vivo experiments and provided insight in dosing and tumor exposure overlap. These results emphasize the necessity of a targeted intracellular delivery system and support the merit of the described approach. Additional research into the safety and efficacy of these molecules as well as the design of new constructs will certainly improve the clinical relevance of this technique.en_US
dc.description.statementofresponsibilityby Christopher M. Pirie.en_US
dc.format.extent155 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titleEngineering targeted proteins for intracellular delivery of biotherapeuticsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.identifier.oclc820730881en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record