Show simple item record

dc.contributor.authorApgar, Joshua F.
dc.contributor.authorWitmer, David K.
dc.contributor.authorWhite, Forest M.
dc.contributor.authorTidor, Bruce
dc.date.accessioned2013-01-08T18:43:04Z
dc.date.available2013-01-08T18:43:04Z
dc.date.issued2010-06
dc.date.submitted2009-09
dc.identifier.issn1742-206X
dc.identifier.issn1742-2051
dc.identifier.urihttp://hdl.handle.net/1721.1/76208
dc.description.abstractComputational models are increasingly used to understand and predict complex biological phenomena. These models contain many unknown parameters, at least some of which are difficult to measure directly, and instead are estimated by fitting to time-course data. Previous work has suggested that even with precise data sets, many parameters are unknowable by trajectory measurements. We examined this question in the context of a pathway model of epidermal growth factor (EGF) and neuronal growth factor (NGF) signaling. Computationally, we examined a palette of experimental perturbations that included different doses of EGF and NGF as well as single and multiple gene knockdowns and overexpressions. While no single experiment could accurately estimate all of the parameters, experimental design methodology identified a set of five complementary experiments that could. These results suggest optimism for the prospects for calibrating even large models, that the success of parameter estimation is intimately linked to the experimental perturbations used, and that experimental design methodology is important for parameter fitting of biological models and likely for the accuracy that can be expected from them.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (U54 CA112967)en_US
dc.description.sponsorshipMIT-Portugal Programen_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technologyen_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistry, Theen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/b918098ben_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePMCen_US
dc.titleSloppy Models, Parameter Uncertainty, and the Role of Experimental Designen_US
dc.typeArticleen_US
dc.identifier.citationApgar, Joshua F. et al. “Sloppy Models, Parameter Uncertainty, and the Role of Experimental Design.” Molecular BioSystems 6.10 (2010): 1890.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorApgar, Joshua F.
dc.contributor.mitauthorWitmer, David K.
dc.contributor.mitauthorWhite, Forest M.
dc.contributor.mitauthorTidor, Bruce
dc.relation.journalMolecular BioSystemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsApgar, Joshua F.; Witmer, David K.; White, Forest M.; Tidor, Bruceen
dc.identifier.orcidhttps://orcid.org/0000-0002-3320-3969
dc.identifier.orcidhttps://orcid.org/0000-0002-1545-1651
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record