Show simple item record

dc.contributor.advisorMichael S. Strano.en_US
dc.contributor.authorAbrahamson, Joel T. (Joel Theodore)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemical Engineering.en_US
dc.date.accessioned2013-01-23T19:41:25Z
dc.date.available2013-01-23T19:41:25Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/76474
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThe nonlinear coupling between an exothermic chemical reaction and a nanowire or nanotube with large axial heat conduction guides a self-propagating thermal wave along the nano-conduit. The thermal conduit accelerates the wave by rapidly transporting energy to un-reacted fuel. The reaction wave induces what we term a thermopower wave, resulting in an electrical current in the same direction. At up to 7 W/g, peak power density is larger than that of many present micro-scale power sources (e.g. fuel cells, batteries) and even about seven times greater than commercial Li-ion batteries. Thermopower waves also tend to produce unipolar voltage pulses, although conventional thermoelectric theory predicts bipolar voltage. These waves also generate thermopower in excess of previous measurements in carbon nanotubes (CNTs) and therefore could increase figures of merit in a variety of thermoelectric materials. In this thesis, I have developed the theoretical framework to describe the thermal and chemical profiles of propagating reaction waves, and their electrical properties. My analysis yielded a new analytical solution for one-dimensional reaction and thermal diffusion systems with nth order kinetics that obviates many approximate or numerical approaches from the past 80 years. A generalized logistic. function describes the temperature and concentration profiles within the solid fuel and provides a solution for the wave velocity for a wide range of conditions. This approach offers new insight into such problems spanning several fields in science and engineering, including propulsion and self-propagating high temperature synthesis (SHS) of materials, as well as the dynamics of thermopower waves. Temperature and voltage measurements of thermopower waves on CNTs show that they can generate power as much as four times greater than predictions based on reference measurements of the Seebeck coefficient for static temperature gradients. We hypothesize that the excess thermopower stems from a chemical potential gradient across the CNTs. The fuel (e.g. picramide) adsorbs and dopes the CNTs ahead of the wave and desorbs and reacts behind the wave front. Furthermore, the excess thermopower depends on the mass of fuel added (relative to CNT mass), and the chemical potential difference matches the magnitude of the excess thermopower. Thus, a major conclusion of this thesis is that coupling to a chemical reaction can boost the performance of thermoelectric materials through differential doping. Thermopower waves can have well defined velocity oscillations for certain kinetic and thermal parameter values. Cyclotrimethylene-trinitramine (fuel) on multiwalled CNTs (conduit) system generates voltage oscillations of 400 to 5000 Hz. These frequencies agree with velocity oscillations predicted by my thermochemical model of the reaction wave, extended to include thermal transport within the conduits. Thermopower waves could thus find applications as new types of alternating current (AC) batteries and self-powered signal generators, which could easily be miniaturized. Microelectromechanical systems and sensors would benefit from thermopower wave generators to enable functions such as communications and acceleration that currently require large power packs. Additionally, the "self-discharge" rate of thermopower wave generators is extremely low in contrast to electrochemical storage, since their energy is stored in chemical bonds. Thermopower waves thus enable new energy storage devices and could exceed limitations of conventional thermoelectric devices.en_US
dc.description.statementofresponsibilityby Joel T. Abrahamson.en_US
dc.format.extent147 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemical Engineering.en_US
dc.titleEnergy storage and generation from thermopower wavesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.identifier.oclc822230619en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record