MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Nuclear Engineering
  • Nuclear Engineering - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Nuclear Engineering
  • Nuclear Engineering - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

General analysis of breed-and-burn reactors and limited-separations fuel cycles

Author(s)
Petroski, Robert C
Thumbnail
DownloadFull printable version (70.66Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.
Advisor
Benoit Forget.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
A new theoretical framework is introduced, the "neutron excess" concept, which is useful for analyzing breed-and-burn (B&B) reactors and their fuel cycles. Based on this concept, a set of methods has been developed which allows a broad comparison of B&B reactors using different fuels, structural materials, and coolants. This new approach allows important reactor and fuelcycle parameters to be approximated quickly, without the need for a full core design, including minimum burnup/irradiation damage and reactor fleet doubling time. Two general configurations of B&B reactors are considered: a "minimum-burnup" version in which fuel elements can be shuffled in three dimensions, and a "linear-assembly" version composed of conventional linear assemblies that are shuffled radially. Based on studies of different core compositions, the best options for minimizing fuel burnup and material DPA are metal fuel (with a strong dependence on alloy content), the type of steel that allows the lowest structure volume fraction, and helium coolant. If sufficient fuel performance margin exists, sodium coolant can be substituted in place of helium to achieve higher power densities at a modest burnup and DPA penalty. For a minimum-burnup B&B reactor, reasonably achievable minimum DPA values are on the order of 250-350 DPA in steel, while axial peaking in a linear-assembly B&B reactor raises minimum DPA to over 450 DPA. By recycling used B&B fuel in a limited-separations (without full actinide separations) fuel cycle, there is potential for sodium-cooled B&B reactors to achieve fleet doubling times of less than one decade, although this result is highly sensitive to the reactor core composition employed as well as thermal hydraulic performance.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, February 2011.
 
Cataloged from PDF version of thesis. "February 2011."
 
Includes bibliographical references (p. 348-351).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/76502
Department
Massachusetts Institute of Technology. Dept. of Nuclear Science and Engineering.
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Nuclear Engineering - Ph.D. / Sc.D.
  • Nuclear Engineering - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.